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In this paper, a method is introduced that allows calculation of an approximate proper
orthogonal decomposition (POD) without the need to perform a simulation of the
full dynamical system. Our approach is based on an application of the density matrix
renormalization group (DMRG) to nonlinear dynamical systems, but has no explicit
restriction on the spatial dimension of the model system. The method is not restricted
to fluid dynamics. The applicability is exemplified on the incompressible Navier–
Stokes equation in two spatial dimensions. Merging of two equal-signed vortices with
periodic boundary conditions is considered for low Reynolds numbers Re � 800 using
a spectral method. We compare the accuracy of a reduced model, obtained by our
method, with that of a reduced model obtained by standard POD. To this end, error
functionals for the reductions are evaluated. It is observed that the proposed method
is able to find a reduced system that yields comparable or even superior accuracy
with respect to standard POD method results.

1. Introduction
Dynamical systems arise wherever time-dependent processes have to be described.

An important class of problems is given by partial differential equations. These
typically arise from physical theories, such as hydrodynamics (see Landau, Lifschitz
& Weller 1991), elastic theory (see Leipholz 1974), electrodynamics, etc. Numerical
approaches require a discretization of the partial differential equations and can
consider only a finite number of degrees of freedom. This leads to a discretization
error. Increasing the resolution, i.e. the number of degrees of freedom in the numerical
description, typically increases the accuracy. For obtaining reasonable low error
bounds this can lead to a high dimensionality of the discretized system. The aim of
model reduction is to provide a ‘small’ model system which can describe and reproduce
the relevant behaviour of a much larger dynamical system. This is summarized in some
detail, e.g. by Antoulas (2005). Orthogonal projection methods are an important class
for model reduction schemes. Following this approach, the dynamics of the reduced
model is given by a linear projection of the original dynamics to a lower dimensional
subspace. If nonlinear systems are also to be considered, an important method for
choosing such a subspace is given by the proper orthogonal decomposition (POD),
which was introduced by Lumley (1967) (see e.g. Sirovich 1987 for details). To actually
calculate a POD, the simulation of the unreduced system is necessary. Recently a
method to avoid this constraint for spatial one-dimensional (also nonlinear) systems
has been proposed by Bogner (2007). For practical purposes this restriction to
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one-dimensional systems is unfavourable. Here, we extend the approach to a
variational method which can be applied to higher dimensional systems. To test
the new method we apply it exemplarily to the process of vortex merging in two-
dimensional incompressible Navier–Stokes equations.

This paper is organized as follows. First, the description of the dynamical systems is
introduced and the model reduction by orthogonal projection is described. Then the
POD is reviewed briefly. Also, the variational POD approach is presented. Next, some
background to the two-dimensional flow problem at hand and the two–dimensional
incompressible Navier–Stokes equations is recalled. The results from the numerical
calculations are presented and the error due to the reduction is compared for the
different approaches.

2. Description and reduction of the dynamics
We consider a scalar field qC(x, t), which depends on a spatial variable x ∈ Ω ⊂ �d

and time t (here we consider d = 2 for simplicity, but higher values are also possible).
The computational domain is Ω . The time evolution of qC(x, t) is given by a partial
differential equation of the form

∂

∂t
qC(x, t) = G(qC(x, t)) qC(x, t), (2.1)

where G is some (eventually nonlinear) operator that can also contain spatial
derivatives. Here we consider autonomous systems, although there is no explicit
restriction for the method.

The discretization is obtained by approximating the scalar field qC(x, t) by an
expansion of the form

qC(x, t) ≈ q(x, t) :=

N∑
i=1

qi(t)ϕi(x). (2.2)

In this work no base flow is assumed. Expansion (2.2) simply defines the discretization
via the Galerkin approach. In (2.2) the ϕi(x) constitute a set of orthonormal functions,
i.e. ∫

Ω

ϕi(x)ϕj (x) dx = δij . (2.3)

The dimensionality of the phase space of the discretized system, i.e the number of
ansatz functions ϕi , is finite, e.g. i = 1, . . . , N . The time dependence of the discretized
solution is given by the N-dimensional vector containing the coefficients, i.e. q :=
(q1, . . . , qN ). In this work, the ansatz functions ϕi are Fourier modes, or equivalently,
periodic sinc functions (see Gottlieb & Orszag 1977). Both cases are related via a
basic change. The resulting dynamics is not affected.

Expressing (2.1) in its weak form and restricting the test functions to the ansatz
functions ϕi yields an equation for the time evolution of the discretized system. The
resulting ordinary differential equation has the form

d

dt
qi(t) =

N∑
j=1

Gij (q(t))qj (t), i = 1, . . . , N, (2.4)

where G is the generator of evolution and depends explicitly on q for nonlinear
problems. Technically, G is an N × N matrix that can depend on the discretized field.
The particular form of G results from the dynamical system considered, as well as
from the choice of the discretization. For our purposes it is useful to expand G(q(t))
in powers of the coefficients qi , i = 1, . . . , N . For the set of ordinary differential
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equations this expansion yields

d

dt
qi(t) =

N∑
j=1

Lijqj (t) +

N∑
j,k=1

Qijkqj (t)qk(t) + · · · , i = 1, . . . , N, (2.5)

where the contributions L and Q represent the linear and the quadratic part of the –
typically nonlinear – generator of evolution. For many applications this expansion is
truncated. The Navier–Stokes equations have a quadratic nonlinearity. Thus the Q
terms already represent the nonlinearity and there are no higher order terms. The
matrix L is an N × N matrix, while Q has three indices running from 1 to N . Likewise,
every higher order contribution contains the number of parameters higher by a factor
of N than the previous order. Note that these parameters define the dynamics of the
system but do not increase the dimensionality of the phase space. There exist some
discretizations that cannot be written in the form of (2.5) with a finite number of
terms. One of these is the Donor-Cell discretization, described by Gentry, Martin &
Daly (1966), as it contains absolute values of the fields.

We start from a discretized system of the type given in (2.4) and (2.5). The dynamic
equation (2.1) as well as the ansatz functions ϕi , i = 1, . . . , N , and the size N of the dis-
cretized system are prescribed. The system given by (2.5) is termed here as the original
or full system. We assess the additional error due to model reduction. The discretiz-
ation error can be controlled typically by choosing the resolution high enough and
will not be considered. The reduction is uniquely defined by the projection operator

P = BB† ∈ �N×N, (2.6)

where the columns of B form an orthonormal basis of the reduced phase space and
B is of the form B ∈ �N × M . The dimensionality of the reduced model is M <N (we
are interested in the case M � N) and B† is the hermitian conjugate of B. Different
choices of B can yield the same P. We will always consider the columns of B to be
mutually orthonormal. To compare the quality of our approach with the standard
POD method the value of M is prescribed here. In practice the value of M would
be determined by the required accuracy and the available computer resources. The
reduced dynamics results from multiplying both sides of (2.5) with P (since P is a
projector, PP = P holds) and is given by

d

dt

(
N∑

j=1

Pijqj (t)

)
i

=

(
N∑

j,k,l=1

PijLjkPklql(t)

)
i

+

(
N∑

j,k,l,m,n=1

Pij (QjklPkmqm(t)Plnqn(t))

)
i

+ · · · . (2.7)

Note that this equation is still defined in the N-dimensional phase space. However, it
determines the solution on the reduced subspace only. By introducing the reduced
entities

q̃i =

N∑
a=1

B†
iaqa with q̃ ∈ �M, (2.8)

L̃i,j =

N∑
a,b=1

B†
i,aLa,bBb,j , i, j = 1, . . . , M, (2.9)

Q̃i,j,k =

N∑
a,b,c=1

B†
i,aQa,b,cBb,jBc,k, i, j, k = 1, . . . , M, (2.10)
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we can express the dynamics of the reduced model in an M-dimensional space as

d

dt
q̃i =

M∑
j=1

L̃ij q̃j +

M∑
j,k=1

Q̃ijkq̃j q̃k + · · · . (2.11)

Note that in general the solution of (2.11) yields a q̃(t) which is different from the
one obtained by projecting a full trajectory to the reduced subspace via (2.8). This is
due to the fact that the reduction and the time evolution do not necessarily commute
for nonlinear systems. For linear systems this is only true if the reduced subspace is
invariant under L.

The error due to the reduction is given by

Ei(t) =

(
qi(t) −

M∑
j=1

Bij q̃j (t)

)
, i = 1, . . . , N. (2.12)

One possible scalar measure for the error is given by the squared Euclidean norm of
E(t),

E(t) =

∥∥∥∥∥∥
(

qi(t) −
∑
j=1

Bij q̃j (t)

)
i=1,...,N

∥∥∥∥∥∥
2

2

. (2.13)

Due to the normalization condition of the expansion functions (see (2.3)), this error
measure is (up to a constant factor) identical with the L2-error of the solution function
q(x, t) constructed from the coefficients qi(t) in (2.2).

3. Proper orthogonal decomposition
Given a (discretized) dynamical system (e.g. (2.5)), a set of initial conditions and

a time interval of interest, the task is to find an optimal linear projection to reduce
(the dimensionality of) the phase space of the system. This is done by the POD
systematically. The POD is widely used in model reduction. On this topic an extensive
literature exists. Some examples are given by Lorenz (1956), Sirovich (1987), Berkooz,
Holmes & Lumley (1998), Rowley, Colonius & Murray (2003) and Noack et al. (2003).
An explanation of the POD together with the method of snapshots is also given by
Sirovich (1987) and Bui-Thanh et al. (2003). One of the advantages of this method is
the possibility to incorporate information from the nonlinear dynamics to obtain a
linear reduction. The basic idea is to generate sample trajectories by simulating the
system of interest.

From the dynamic equation (2.5), we can define a time average, if we specify a set
of trajectories. The time average of some observable A can be defined by

〈A〉T :=
1

n(tmax − t0)

n∑
k=1

∫ tmax

t0

A(qk(t)) dt, (3.1)

where n is the number of sample trajectories and qk(t) is the state vector for the
kth trajectory. The time average is carried out from t0 to tmax and over all sample
trajectories qk , k = 1, . . . , n. The choice of the time interval as well as the choices of
the initial conditions for the sample trajectories depend on the process to be studied.

A common optimality condition, also used by Sirovich (1987) and Antoulas (2005),
is requiring the average least-square truncation error being minimal. Although this is
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not the only sensible choice we will use in this condition, i.e.

ε := 〈Ek(t)〉T =
〈
||qk(t) − Pqk(t)||22

〉
T

=
!

minimal. (3.2)

Here P is again the projection operator defined by the reduced orthonormal basis B
(see (2.6)). Instead of minimizing the error ε which is the time average of

‖qk(t) − Pqk(t)‖2
2 = ||qk(t)||22 − 2〈qk(t), Pqk(t)〉 + ||Pqk(t)||22, (3.3)

we can maximize the time average of 〈qk(t), Pqk(t)〉, i.e. the average projection of qk(t)
onto itself under P. The brackets 〈 ·, · 〉 (without subscript) denote the canonical scalar
product (or Euclidean inner product). The function to maximize the time average is
given componentwise by

maximal =
!

〈
N∑

i=1

qi(t)

N∑
j=1

Pijqj (t)

〉
T

=

N∑
i=1

N∑
j=1

〈qi(t)qj (t)〉T Pij =: c. (3.4)

Here, the so-called spatial correlation matrix Cij = 〈qi(t)qj (t)〉T arises, which is a
discrete version of the spatial correlation function. (Here, this is literally true only
for the periodic sinc basis. More accurately, it would be termed modal correlation
matrix. In any case, it is not the temporal correlation matrix.) It is symmetric and
positive semi-definite. After calculating an eigenbasis {φi}i =1,...,N for C we get

c =

N∑
i=1

N∑
j=1

N∑
k=1

N∑
α=1

φi
kBiαλkB

†
αjφ

j
k , (3.5)

where φi
k denotes the kth component of the ith eigenvector of C and λk is the kth

eigenvalue. Since the columns of B and the φi each form orthonormal sets and the
λi ’s are positive, (3.5) is maximized if we choose the eigenvectors φi for the largest
eigenvalues of C as columns of B.

Now we have a method to obtain an optimal basis B. To do this numerically, the
correlation matrix is approximated by the sample correlation matrix C. To determine
C the system is simulated using a finite number, e.g. Nt , of time steps which yields a
data matrix Dij = qj (ti). The sample correlation matrix is given by

C =
1

Nt − 1
D†D, (3.6)

where the number of time steps is Nt . Decomposing D via the singular value
decomposition (SVD), detailed in Golub & VanLoan (1983–1996), gives orthogonal
matrices U and V and a diagonal matrix Σ with D= UΣV†. The eigenbasis of C is
V. This is obvious from D†D =VΣU†UΣV† = VΣ2V†. In some cases the number of
time steps Nt is much smaller than the spatial dimensionality N . In this case it is
easier to calculate the eigenbasis U of DD†. The matrix V can then be obtained via
U†D =ΣV. Since Σ is diagonal we only have to normalize the columns of ΣV to
get V which is the eigenbasis of D†D and consequently also of the correlation matrix
C = (1/(Nt − 1))(D†D). In the literature this is also known as method of snapshots.

4. Variational POD method
The POD method presented by Bogner (2007), here referred to as the POD-DMRG

method, is based on density matrix renormalization group (DMRG) techniques.
It is restricted to spatially one-dimensional systems by construction. For physical
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Figure 1. Illustration of one-low-wavenumber Fourier mode and a set of delta states that
make up one particular choice of Bnew . The delta states are not shown normalized here.

applications this is a severe restriction. This problem is typical for DMRG applications
and no complete solution to it has been found until now. However, some approaches to
higher spatial dimensions exist for quantum mechanics. This work extends the POD-
DMRG method to systems with higher spatial dimensionality in a way similar to the
one presented by Martı́n-Delgado, Rodrı́guez-Laguna & Sierra (2001). The proposed
method is described here. The quantum mechanical approach is not detailed further,
since this is not necessary for the understanding. The same holds for the approach of
Bogner (2007), which is technically quite independent from this work.

4.1. Technical implementation

The task is to find an optimal reduced basis of dimension M . The first step is to
choose an ansatz basis B0 of dimension M . Principally, this could be a random but
orthonormal basis. This is inefficient but works e.g. for the diffusion (or heat) equation
∂qC/∂t = k	qC. For the Navier–Stokes equations, instabilities arise in this case, since
random basis functions are not likely to be smooth. A more sensible choice for the
ansatz basis is e.g. a set of low-wavenumber Fourier modes. Here we always start
with this initialization. The ansatz basis B0 is extended by a test basis Bnew containing
a number of Mpatch column vectors, which should be linearly independent of B0. In
the work of Martı́n-Delgado et al. (2001), delta states for a particular ‘patch’ region
in the physical space are chosen but this is not mandatory. As an example, a set of
delta states together with a Fourier mode is represented in figure 1 graphically. The
resulting composed basis B0 ′ := [B0, Bnew ] has size N × (M+Mpatch) and full rank. Via
an orthonormalization procedure, e.g. Gram–Schmidt, we obtain the N × (M +Mpatch)
orthonormal matrix B0 ′′. The reduced system is now determined by B0 ′′ via (2.8)–
(2.10). The dynamics of the reduced system is given by (2.11), replacing B with B0 ′′.
This system has (M+Mpatch) degrees of freedom and is simulated in each iteration step.
For the following iterations the construction of the corresponding matrices Bi ′, Bi ′′

(for the ith iteration) is similar. As described in § 3, we obtain an orthonormal POD
basis B̃POD of the reduced system, which we use to calculate the new improved ansatz
basis (retaining M degrees of freedom)

�N×M � Bi+1 = (Bi ′′)†B̃POD . (4.1)
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Figure 2. Scheme for choosing the inserted basis Bnew . (a) For the real-space method choosing
delta functions, one for each grid node in the current patch. (b) The same choice for the
spectral variant in Fourier space. Since then B0 is initialized with the lowest wavenumber
vectors, starting with an adjacent patch is necessary.

Proper orthogonal decompositionBi+1

Calculate reduced operators

Orthonormalisation

Bi

‘Patch’ states

Bi′: = [Bi, Bnew]

Bi′′

Δ
~ J

~ 
ω~ 0

Figure 3. Flow chart diagram for a single step in the variational method. In each step the
basis Bi is first expanded by Bnew and, subsequently to the POD calculation, reduced to
its original size again. An iteration step consists of several substeps, until all the inserted
Bnew together span the whole phase space. Here the reduced entities are the reduced Laplace

operator 	̃, the reduced Jacobi operator Ĵ and the reduced initial condition ω̃0.

The basic step described above is now repeated with different choices for Bnew . In the
case of Bnew being composed of delta states, one typically moves the ‘patch’ through
the physical space. This is also done by Martı́n-Delgado et al. (2001) (see figure 2a). A
single iteration step is completed when the full system has been covered by the patch,
or more generally, when the matrices Bnew of all iteration steps span the whole phase
space. To improve the reduction, several iterations can be performed. In figure 3 we
present a flow chart of the method proposed above.

4.2. Spectral variant

The choice of delta states for Bnew in the method above results in a local
inhomogeneous description of the field evolution. This can be problematic for the
study of the incompressible Navier–Stokes equations as it enforces the occurrence
of instabilities. A smoother approximation is obtained if one chooses Bnew to be
composed of low-wavenumber Fourier modes instead; then the ‘patching’ occurs in
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Fourier space (see figure 2b). Since we require Bi and Bnew to be linearly independent,
one has to choose the first initialization accordingly.

4.3. Motivation of the term ‘variational method’

The term ‘variational method’ can be motivated as follows. We are searching for an
optimal reduced basis and consequently for an optimal reduced model. The form
of this model is always prescribed by (2.4). The optimality condition (3.4) describes
a minimization problem where the only free parameters are the matrix elements
of B. Requiring orthonormality, not all matrix elements of B are independent, but
even without further constraints the columns of B maximizing (3.4) and (3.5) would
be linearly independent. In each iteration step the number of free parameters is
temporarily increased. This corresponds to a variation of the reduced system. For
an optimal B the error functional to be minimized should not change under the
variation. This is best approximated by our choice of Bi+1 for the next iteration.
Here two points remain: First, it is assumed that calculation of the POD and the
model reduction commute. Second, a higher dimensional model (expanded basis) will
in general lead to higher accuracy. Therefore the eigenvectors, not included in Bi+1,
will correspond to non-zero eigenvalues in the correlation matrix. Consequently, the
error functional will change under the variation. Nevertheless, for our choice of Bi+1

this change is minimal, under the constraint of having an M-dimensional reduced
model.

5. Navier–Stokes equations and two-dimensional flows
The Navier–Stokes equations constitute a general framework for the description

of the macroscopic variables of a fluid and thus have great practical importance.
It should be noted that two-dimensional flow dynamics differs significantly from
its three-dimensional counterpart. In two-dimensional flows, e.g. the effect of vortex
stretching is absent. In three dimensions, if a vortex is stretched, the rotating fluid is
moved to the vortex line. Conservation of angular momentum leads to an increase of
angular velocity and the vortex can break up. In two dimensions the vorticity is always
perpendicular to the plane of motion so that it can be described by a quasi-scalar. Due
to this property energy is transported from smaller scales to larger scales. Hasegawa
(1985) and van Heijst (1993) have considered this as an example for self-organization.
Of fundamental importance for the self-organization is the process of merging of
two equal-signed vortices. This has been studied e.g. by Nielsen et al. (1996). Two-
dimensional flows can be observed, e.g. in stratified fluids. One important example is
the atmosphere (e.g. see Dritschel & Legras 1993). There are also additional forces
due to the rotating frame of reference as the Coriolis force have to be considered (see
Huber, McWilliams & Ghil 2001. Variational methods have already been applied to
the two-dimensional Euler flow for steady-state problems, e.g. by van de Fliert, van
Grossen & de Vries (1995). The unforced incompressible viscous two-dimensional
Navier–Stokes equation will be used as a testing ground for the method.

The equations for incompressible flow read

ρ
∂v

∂t
= μ∇2v − ρ(v∇)v − ∇p, (5.1)

∇v = 0. (5.2)

Here ρ is the density, v the velocity and μ the dynamic fluid viscosity. The Navier–
Stokes equations can be rescaled to compare flows on different lengths L0 and velocity
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scales v0. Here the Reynolds number Re := (v0L0ρ)/μ characterizes the problem and
describes the ratio of inertial forces to viscous forces. Therefore, the Reynolds number
will be a relevant parameter in the present study. Here the rescaled dimensionless
variables are always considered. In incompressible inviscid flows the vorticity

∫
Ω

ωdx

and the kinetic energy E =(1/2)
∫

Ω
‖v‖2dx are conserved. In two-dimensional flows

also the enstrophy V =(1/2)
∫

Ω
ω2dx is conserved. For more details, see Kraichnan

& Montgomery (1980).
For incompressible flows the flow velocity is completely determined by the vorticity

ω as

v = ∇ × ω. (5.3)

Taking the curl of (5.1) and noting that the vorticity ω is orthogonal to the plane
onto which v is restricted one gets the vorticity-stream function formulation:

∂ω

∂t
=

1

Re
∇2ω − ∂ω

∂x

∂ψ

∂y
+

∂ω

∂y

∂ψ

∂x
, (5.4)

where ω is the pseudo-scalar vorticity, i.e. the modulus of the vorticity ω, and ψ the
stream function. The vorticity and the stream function are related via the Poisson
equation

∇2ψ = −ω. (5.5)

Periodic boundary conditions in both spatial dimensions are used here. The spatial
discretization is done by a spectral method which is detailed e.g. in Gottlieb & Orszag
(1977). Here a finite set of low-wavenumber Fourier modes serves as ansatz functions
for the discretized solution. The time integration is performed by a third-order stiffly
stable operator splitting method which was proposed by Karniadakis, Israeli & Orszag
(1990).

5.1. Model problem

To compare the reduction methods, the process of the merging of two adjacent vortices
is used as an example. For the non-viscous case this process has been studied, e.g. by
Nielsen et al. (1996). The initial conditions used in the following are a superposition
of two equal-signed vortices, each given by

ω±(x, y) = 1
2
ς0

(
1 − tanh

√(
x − 1

2

)2
+

(
y ± dh − 1

2

)2

)
, x, y ∈ [0, 1], (5.6)

where ς0 denotes the initial maximal vortex intensity and 2dh stands for the initial
distance of the two vortices. These parameters are set to ς0 = 1 and dh = 0.15,
respectively. Thus the initial condition is ω0 := ω(t0, x, y) =ω+(x, y) + ω−(x, y). The
computational domain is the square given by

Ω = [0, 1] × [0, 1]. (5.7)

The time interval is

[t0, tmax ] = [0, 100]. (5.8)

In the case of the incompressible flow the ordinary differential equation system
resulting from the spatial discretization of (5.4) and (5.5) can be written as

d

dt
ωi = 	i,jωj + Ji,j,kωjψk, (5.9)

−	i,jψj = ωi. (5.10)
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Use of Einstein’s sum convention is made here. The equations for the reduced
dynamics have the same form but contain the reduced operators and initial conditions

	̃i,j := Bαi	αβBβj , (5.11)

J̃ i,j,k := BαiJαβγ BβjBγk, (5.12)

ω̃0i := Bαiω0α. (5.13)

5.2. Numerical integration

Finite resolution tends to lead to instability of the numerical solution schemes for the
Navier–Stokes equations. Nielsen et al. (1996) have mitigated this effect by an artificial
hyper-viscosity term. In their work a spectral discretization and a third-order operator
splitting scheme as proposed by Karniadakis et al. (1990) is used. The accuracy of all
reduction methods has shown to decrease significantly for larger Reynolds numbers.
Therefore these studies are restricted to comparatively low Reynolds numbers of
Re � 800.

6. Numerical results
The flow described above is analysed for grid sizes of 48 × 48 and 72 × 72 using

spectral methods for spatial discretization and a third-order time integration. The
resolution is considerably low for studies of such types of problems. The aim is to test
the approach on a minimalist model. Nevertheless, the small system size provides fast
calculations and also mitigates the need to optimize the efficiency of the algorithms
considered here. It reduces possible error sources also.

Throughout this section the L2-error of the reduced and full simulation is
considered. It is defined by

EL2 (t) :=

∫
Ω

(q(x, t) − q̃(x, t))2dx, (6.1)

where q̃(x, t) is the reduced field and results from the expansion in (2.2), replacing
q by Pq. The L2-error, EL2 , is identical to the error already introduced in (2.13)
multiplied by 1/

√
N due to the orthonormality of the expansion functions (see (2.3))

and since ∫
Ω

dx = 1,

(
N∑

i=1

1

)1/2

=
√

N. (6.2)

Note that the spectral variant of the variational POD algorithm is used, unless
otherwise stated explicitly.

6.1. Snapshots of the flow

To give a qualitative idea of the merging process, a series of snapshots of the vorticity
field for Reynolds number Re = 400 are included. For lower values of Re the influence
of friction increases, leading to a faster decrease of the vorticity and a ‘less interesting’
dynamics. Figure 4 shows the time evolution of the vorticity in three-dimensional
plots. During the simulation both vortices merge after encircling each other for about
2/3 rotations leaving a large vortex with some additional structure.

6.2. Comparing the accuracy

6.2.1. Effect of the Reynolds number

To compare the quality of the different reduction methods, the L2-error for the
standard POD, the variational POD and a low-wavenumber Fourier mode reduction
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Figure 4. Vorticity for the 48 × 48 grid at Re = 400 after 1–800 time steps as three-dimensional
plots. At t = 100 approximately 2/3 rotations of the vortices around each other are completed.
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Figure 5. L2-error for Re = 100 to Re = 800, three iteration runs, ht = 0.125, M =36,
Mpatch = 36 and 800 time steps.

is calculated. Figure 5 shows the results for a 48 × 48 grid, a time step of ht = 0.125
and a Reynolds number range from 100 to 800. For the variational algorithm the
number of retained states M as well as the number of trial states Mpatch is M = 36,
Mpatch = 36. The simulation time is long enough so that a final state with a single
broad vortex is reached (compare also figure 4).

A decrease in performance is observed for increasing Reynolds number for all
methods. For low Reynolds number the Fourier mode reduction is superior to
the other methods. The good performance of the low-wavenumber Fourier mode
reduction results from the special properties of the problem at hand. In this special
case the diffusion as well as the two-dimensional advection mainly produce structures
on large length scales. This result does not reduce the value of the variational POD
approach as both POD-based methods compared here do not rely on a particular
dynamical system.

The full POD reduction gives very similar performance for Reynolds numbers
Re � 400. The errors produced by the variational POD reduction are comparable to
the ones obtained by the full POD reduction. For the higher Re numbers the upper
error bound is lower for the variational POD reduction, compared to the standard
POD as well as to the Fourier reduction.

6.2.2. Effects of the iterations

The aim of the iterations, or sweeps, is to increase the accuracy of the reduced
model. The corresponding error calculations are shown in figure 6. It can be stated
that the desired result is obtained only for the Reynolds number Re = 400 which lies
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Figure 6. The L2-error for the 48 × 48-dimensional grid with Reynolds numbers from
Re = 200 to 800. The time step size is ht = 0.125 and the numbers of retained and trial
states are M = Mpatch = 36.

also in the domain, where the variational POD performs best. In the other cases the
iterations may even decrease the accuracy. It can be concluded that a single iteration
is in these cases enough and further steps do not gain more information. This is
clearly undesirable; however, the source of this behaviour is yet unknown.

6.2.3. Effects of different number of retained states

The number of retained states M determines the dimensionality of the reduced
system and therefore affects the accuracy of the reduced model directly. The number
of trial states Mpatch is chosen equal to M . To compare the performance of the different
modes, the system is simulated using M modes. The L2-error with respect to the full
simulation is calculated. The result for the Reynolds number Re = 150 is shown in
figure 7. Only a marginal reduction of the error is observed for increasing M for
the standard POD method. This would be expected if already a few POD modes
are sufficient to describe the dynamics efficiently. However, the performance of the
low-wavenumber Fourier mode basis is for significant time spans superior to that
of the standard POD modes. For the Fourier mode reduction itself one observes a
very systematic increase of the accuracy with M . Therefore one can conclude that the
Fourier modes of the lowest 12 × 12 wavenumbers are all relevant for the dynamics.
Especially the initial conditions are very localized and so many Fourier modes are
necessary for a good approximation. The variational POD modes show a tendency to a
poorer performance than the standard POD results. This occurs approximately in the
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the spectral variant of the variational POD method are used, ht = 0.125 and 3200 time steps.

time domain in which the standard POD results are also superior to the Fourier mode
reduction. Further a small decrease of accuracy is observed when increasing M from
36 to 64. This is surprising and currently no complete explanation is available. The
choice of M and Mpatch directly affects the calculation of the modes for the variational
POD method in contrast to the low-wavenumber Fourier or standard POD modes.
Additional modes in the variational POD method can then in principle contribute to
numerical artefacts instead of increasing the quality of the approximation. However,
the expected increase of accuracy is observed when increasing M further to 144.

6.2.4. Effect of the spatial resolution

The resolution of the lattice clearly determines the accuracy of the unreduced
system in describing the partial differential equation of interest. To assess the impact
of this parameter on the quality of the reduction, calculations on the usual 48 × 48
grid and on a 72 × 72 grid are performed. Both lattice sizes are integer multiples of
6 × 6 and in both cases M = 36, Mpatch =36 are chosen. By this choice the reduced
systems have the same dimensionality in all cases. The other parameters are set
exemplarily to Re = 400 and ht =0.125. A single iteration run is performed. The
results are shown in figure 8. The effect of increasing the lattice resolution on the
Fourier mode reduction and the POD mode reduction is comparatively small, below
10 %. In case of the Fourier mode reduction this is on the one hand because the
essentially same low-wavenumber Fourier modes (albeit with a higher resolution) are
used. On the other hand the higher resolution does not lead to a qualitative different
behaviour of the unreduced system. Thus one can assume that the resolution is high
enough to give a good approximation to the continuous description. This assumption
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is supported by the small increase of accuracy for the POD reduction. The results
for the variational POD method are also similar. The maximal error is higher for the
increased resolution for all reduction methods. In contrast to the other approaches,
the difference in the error due to the resolution decreases with time for the variational
POD. This can be only contributed to the fact that there are more simulation steps
in each iteration and that the test basis Bnew have a higher resolution also.

6.2.5. Variational POD versus the spectral variant

Comparing the performance of both versions of the variational POD one observes
that the real-space variant is superior for Re =400 but leads to higher errors than the
other method for higher Reynolds numbers. For Re = 500 the maximum error is still
smaller than for the other approaches. The reason for this behaviour is not yet clear.
For Re = 200 the real-space algorithm did not even converge, i.e. the simulation of
the reduced system breaks down. Thus the spectral version of the variational POD
reduction seems to be preferable to the real-space variant. The spectral variant is also
successful in a broader Reynolds number domain (see figure 9).

6.2.6. Visualization of the POD and V-POD modes

The POD modes themselves can visualize some qualitative aspects of the flow.
Therefore the most relevant modes for the full POD and the variational POD are
shown in figures 10 and 11. For the first example with Re =200 one sees a qualitative
agreement with the POD method although the variational POD modes seem to be
degraded. The second example shows the results of the real-space method for Re = 400
which are clearly superior to those of the standard POD. Subjectively these modes
seem to be more inaccurate than the POD modes. From this one can state that the
quality of the reduced basis is not intuitively accessible from the modes themselves.

6.2.7. Stability

For numerical calculations stability is an important concern. Two points are of
relevance here. First, it has to be ensured that the time averages (see (3.1)), can be
calculated numerically. The dynamical system is considered in a discretized form.
Therefore a suitable choice of the spatial and temporal discretization, which is not
a subject of this work, is required. An inadequate choice of the discretization can
cause instabilities that are not connected to the proposed method. However, this
topic should be kept in mind when choosing B0 or Bnew . In practice, only predictably



46 T. Bogner

0 20 40 60 80 100
10–4

10–3

10–2

10–1

100
Re = 400

L
2 -E

rr
or

0 20 40 60 80 100
10–4

10–3

10–2

10–1

100
Re = 600

0 20 40 60 80 100
10–4

10–3

10–2

10–1

100
Re = 500

Time t

L
2 -E

rr
or

0 20 40 60 80 100
10–4

10–3

10–2

10–1

100
Re = 800

Time t

Variational POD spectral
Variational POD realspace
POD
Fourier modes

Figure 9. Comparison of the real-space method with the spectral variant of the variational
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inappropriate choices, as a random basis or delta states in real-space for larger
Reynolds numbers, have caused problems. In order to have a stable system, the
eigenvalues of the generator of the time evolution have to be zero or negative. The
proposed method basically replaces the simulation in the standard POD approach
by repeated simulation runs of small subsystems. Therefore the time averages for
the subsystems have to be calculated. For a linear system the eigenvectors of the
sample correlation matrix typically are also eigenvectors of the generator of the time
evolution. The reduced generator of evolution, G̃ = L̃, will then contain the largest
eigenvalues of L which are less than or equal to 0 for stable systems. Then the reduced
system is also stable and the time averages can be calculated. In the nonlinear case the
reduced system may become unstable. Consequently, no sample correlation matrix
can be calculated and the algorithm breaks down. In order to prevent this, the above
points should be considered.

The second point is the stability of the algorithm itself, i.e. whether an improved
reduction can be calculated if the time averages exist. For linear systems the iterations
of the algorithm increase the quality of the reduction, once the calculation of the
sample correlation matrix is guaranteed, by construction. Consider Bi and Bnew to
be L-invariant. The optimal L̃ retains the M largest eigenvalues of L (see Bogner
2007). By construction, B†

i+1LBi+1 will contain the M largest eigenvalues of B†
i LBi and

B†
newLBnew . Therefore it will describe a more optimal reduced system. For nonlinear
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the spectral variant of the variational POD method with ht = 0.125 and 3200 time steps. (a)
Variational POD modes versus (b) full POD modes.
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problems there is currently no rigorous proof, when an iteration step decreases the
error. However, the diagonalization of the sample correlation matrix is well defined
in any case. The algorithm further leads to an improvement in most cases considered
here. If the accuracy is not increased, the additional error is small and can be removed
in further steps.

7. Conclusions
Encouraged by the results of the POD-DMRG algorithm, this approach was

extended to higher dimensional systems. As a model system the two-dimensional
Navier–Stokes equations have been chosen. These are numerically more demanding
than the examples considered by Bogner (2007) and describe a more realistic system.
The algorithm itself can be interpreted as a variational form of the POD. One
important point is that it can also be applied to higher dimensional systems without
significant modifications. To restrict the numerical effort, the situation for a particular
minimalist problem was evaluated only. This nevertheless demonstrates the viability
of the approach and the simplicity encourages the use in non-fluid dynamical
applications.

Although no previous simulation of the system is required, the performance of the
variational POD was found to be comparable to the standard POD. The simulation is
effectively split into several much simpler calculations. This is the main motivation for
this approach. Currently, the simulation of the small reduced system poses the largest
problems. The real-space variant, for example, has shown an unexplained divergence
for low Reynolds numbers Re � 200. Nevertheless, the real space as well as the
spectral variant of the variational POD exhibit a performance clearly superior to the
full POD reduction and the Fourier mode reduction for a narrow Reynolds number
range. This is possible since the POD reduction is optimal only for representing the
simulation data. The reproduction of the dynamics itself need not to be optimal.

In particular for applications to fluid dynamics, care should be taken to start from a
reasonable, i.e. stable, reduced system. The key is to find appropriate ansatz functions.
These are subsequently improved by the variational POD. For more realistic problems
more detailed understanding of flow processes should be included, e.g. a base flow
could be included. If the equations are in velocity/pressure formulation, additional
corrections to the pressure term, as in Noack, Papas & Monkewitz (2005), should be
considered. Also effects of unresolved scales could lead to (stabilizing) higher order
interactions as in Ukeiley et al. (2001). Compared with the Fourier mode reduction,
the performances of all POD-based methods were inferior for the minimalist example
in this work. This is problem dependent. Both the diffusion and the two-dimensional
advection mainly lead to spatially low-frequency modes. Comparison of both POD-
based approaches however shows that the variational POD can produce results
similar to those produced by the standard POD. In contrast to the Fourier mode
reduction, the POD methods rely less extensively on special properties of the system at
hand.

No comparison of the computational load for the variational POD method and
that for the standard POD was made. The reason for this is simple. The new
approach requires the explicit storing and processing of dense (but comparatively
small) matrices and tensors. Calculating a full POD with the same algorithms (e.g.
for simulating the system) would be very inefficient and would result in an unrealistic
high load for the full POD. If efficiency is an issue, the full POD and the variational
POD have very different requirements. Therefore, comparison of the computational
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load would depend too much on the choice of the actual implementation rather
than on the methods themselves. Since the proposed method aims at avoiding the
full simulation for a POD and thus eventually in a reduction of the computational
load, at least a scaling argument for this approach should be given. The number of
multiplications required by the variational POD increases linearly with the system
size N . For the full simulation the computational load of a single time step scales
at least with N log N , depending on the time integration scheme. Further, the cost
for the eigen decomposition of the sample covariance matrix is (min(Nt, N ))3 for the
standard POD, in contrast to (min(Nt, M + Mpatch))

3 for the variational POD. This
would make the latter approach preferable for large Nt .

I would like to thank the German Science Foundation (DFG) for support of this
project (Contract No. DE 896/1-(1,2) 2004-2007). Further I would like to thank
Ph. Blanchard, F. Schmid, Birgit Lessmann and Hans Behringer for discussions.

REFERENCES

Antoulas, A. C. 2005 Approximation of Large-Scale Dynamical Systems. Cambridge University
Press.

Berkooz, G., Holmes, P. & Lumley, J. L. 1998 Turbulence, Coherent Structures, Dynamical Systems
and Symmetry. Cambridge Monographs on Mechanics.

Bogner, T. 2007 Density matrix renormalization for model reduction in nonlinear dynamics. ArXiv
Physics e-prints ArXiv:0707.4384v1.

Bui-Thanh, T., Damodaran, M. & Willcox, K. 2003 Proper orthogonal decomposition extensions
for parametric applications in transonic aerodynamics. AIAA Paper 4213.

Dritschel, D. G. & Legras, B. 1993 Modeling oceanic and atmospheric vortices. Phys. Today 46,
44–51.

van de Fliert, B. W., van Groesen, E., R. de Roo & de Vries, R. W. 1995 Numerical algorithm
for the calculation of nonsymmetric dipolar and rotating monopolar vortex structures.
J. Comput. Appl. Math. 62, 1–25.

Gentry, R., Martin, R. & Daly, B. 1966 An Eulerian differencing method for unsteady compressible
flow problems. J. Comput. Phys. 1, 87–118.

Golub, G. H. & VanLoan, C. F. 3rd Edition 1996 Matrix Computations. Johns Hopkins University
Press.

Gottlieb, D. & Orszag, S. A. 1977 Numerical Analysis of Spectral Methods: Theory and Application.
SIAM.

Hasegawa, A. 1985 Self-organization processes in continuous media. Adv. Phys. 34, 1–42.

van Heijst, G. 1993 Self-organization of two-dimensional flows. Nederlands Tijdschrift voor
Natuurkunde 59, 321–325.

Huber, M., McWilliams, J. C. & Ghil, M. 2001 A climatology for turbulent dispersion in the
troposphere. J. Atmos. Sci. 58, 2377–2394.

Karniadakis, G. E., Israeli, M. & Orszag, S. 1990 High-order splitting methods for the
incompressible Navier–Stokes equation. J. Comput. Phys. 97, 414–443.

Kraichnan, R. H. & Montgomery, D. 1980 Two-dimensional turbulence. Reports Prog. Phys. 43,
547–619.

Landau, L. D., Lifschitz, E. M. & Weller, W. 1991 Hydrodynamik, 5th rev. edn. Akademie-Verlag.

Leipholz, H. 1974 Theory of Elasticity. Leyden, Noordhoff.

Lorenz, E. N. 1956 Empirical orthogonal functions and statistical weather prediction. Scientific
Report 1, Statistical Forecasting Project MIT.

Lumley, J. L. 1967 The Structure of Inhomogeneous Turbulent Flows. Nauka.

Martı́n-Delgado, M. A., Rodrı́guez-Laguna, J. & Sierra, G. 2001 Single-block renormalization
group: quantum mechanical problems. Nucl. Phys. B 601, 569–590.

Nielsen, A. H., He, X., Rasmussen, J. J. & Bohr, T. 1996 Vortex merging and spectral cascade in
two-dimensional flows. Phys. Fluids 8(9), 2263–2265.



50 T. Bogner

Noack, B. R., Afanasiev, K., Morzynski, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low
dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497,
335–363.

Noack, B., Papas, P. & Monkewitz, P. 2005 The need for a pressure-term representation in empirical
Galerkin models of incompressible shear flows. J. Fluid Mech. 523, 339–365.

Rowley, C. W., Colonius, T. & Murray, R. M. 2003 Model reduction of compressible flows using
POD and Garlerkin projection. Phys. D 189, 115–129.

Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Q. Appl. Math. XLV, 561–591.

Ukeiley, L., Cordier, L., Manceau, R., Delville, J., Glauser, M. & Bonnet, J. 2001 Examination
of large-scale structures in a turbulent plane mixing layer. Part 2. Dynamic systems model.
J. Fluid Mech. 441, 67–108.


